Characterisation of non-degraded oligosaccharides in enzymatically hydrolysed and fermented, dilute ammonia-pretreated corn stover for ethanol production

نویسندگان

  • M. C. Jonathan
  • J. DeMartini
  • S. Van Stigt Thans
  • R. Hommes
  • M. A. Kabel
چکیده

BACKGROUND Corn stover is lignocellulosic biomass that has potential to be used as raw material for bioethanol production. In the current research, dilute ammonia pretreatment was used to improve the accessibility of corn stover carbohydrates to subsequently added hydrolytic enzymes. Some carbohydrates, however, were still present after enzymatic hydrolysis and fermentation. Hence, this research was aimed to characterise the recalcitrant carbohydrates, especially the oligosaccharides that remained after hydrolysis and fermentation of dilute ammonia-pretreated corn stover (DACS). RESULTS About 35% (w/w) of DACS carbohydrates remained after enzymatic hydrolysis and fermentation of the released monosaccharides. One-third of these recalcitrant carbohydrates were water soluble and composed of diverse oligosaccharides. By using UHPLC-MS n , more than 50 oligosaccharides were detected. Glucurono-xylooligosaccharides (UAXOS) with a degree of polymerisation (DP) less than 5 were the most abundant oligosaccharides. The (4-O-methyl) glucuronosyl substituent was mostly attached onto the terminal xylosyl residue. It was shown that the glucuronosyl substituent in some UAXOS was modified into a hexenuronosyl, a glucuronamide or a hexenuronamide residue due to the dilute ammonia pretreatment. Another group of abundant oligosaccharides comprised various xyloglucan oligosaccharides (XGOS), with a DP 5 annotated as XXG as the most pronounced. In addition, disaccharides annotated as xylosyl-glucose with different β linkages as well as larger carbohydrates were present in the fermentation slurry. CONCLUSIONS Around one-third of the 35% (w/w) recalcitrant DACS carbohydrates remained as water-soluble saccharides. In this study, more than 50 recalcitrant oligosaccharides were detected, which mostly composed of xylosyl and/or glucosyl residues. The most pronounced oligosaccharides were UAXOS and XGOS. Hence, α-glucuronidase and α-xylosidase were suggested to be added to the enzyme mixture to degrade these oligosaccharides further, and hence the fermentation yield is potentially increased.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies.

In order to investigate changes in substrate chemical and physical features after pretreatment, several characterizations were performed on untreated (UT) corn stover and poplar and their solids resulting pretreatments by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, flowthrough, lime, and SO(2) technologies. In addition to measuring the chemica...

متن کامل

Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production.

Dilute H(3)PO(4) (0.0-2.0%, v/v) was used to pretreat corn stover (10%, w/w) for conversion to ethanol. Pretreatment conditions were optimized for temperature, acid loading, and time using central composite design. Optimal pretreatment conditions were chosen to promote sugar yields following enzymatic digestion while minimizing formation of furans, which are potent inhibitors of fermentation. T...

متن کامل

Impact of recycling stillage on conversion of dilute sulfuric acid pretreated corn stover to ethanol.

Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute-acid pretreated corn stover hydrolysate were fermented to ethano...

متن کامل

Bioethanol Fermentation from Non-treated and Pretreated Corn Stover Using Aspergillus Oryzae

A comparison was studied for non-treated and pretreated corn stover with dilute alkaline peroxide and dilute acid treatment respectively for bioethanol production by simultaneous saccharification and fermentation (SSF) process in a continuous stirred batch bioreactor using fungi Aspergillus oryzae. The optimum parameters for bioethanol fermentation were: time, 48 h; pH, 6.0; temperature, 50oC; ...

متن کامل

Optimization of pH controlled liquid hot water pretreatment of corn stover.

Controlled pH, liquid hot water pretreatment of corn stover has been optimized for enzyme digestibility with respect to processing temperature and time. This processing technology does not require the addition of chemicals such as sulfuric acid, lime, or ammonia that add cost to the process because these chemicals must be neutralized or recovered in addition to the significant expense of the ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017